Jones, P. G. (1988). J. Organomet. Chem. 345, 405-411.
Jones, P. G., Kienitz, C. \& Thöne, C. (1994). Z. Kristallogr. 209, 85-86.
Klouras, N., Nastopoulos, V., Demakopoulos, I. \& Leban, I. (1993). Z. Anorg. Allg. Chem. 619, 1927-1930.

Kocman, V., Rucklidge, J. C., O’Brien, R. J. \& Santo, W. (1971). J. Chem. Soc. Chem. Commun. p. 1340.
Petersen, J. L. \& Dahl, L. F. (1975). J. Am. Chem. Soc. 97, 64226432.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). XEMP. Empirical Absorption Correction Program. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1992a). DIF4. Diffractometer Control Program. Version 7.09. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1992b). REDU4. Data Reduction Program. Version 7.03. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 2404-2406

1,5-Diferrocenylnaphthalene

C. John McAdam, Brian H. Robinson and Jim Smpson

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. E-mail: jsimpson@alkali.otago.ac.nz
(Received 10 May I996; accepted 4 June 1996)

Abstract

The title compound, $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{14}\right)\right]$, was prepared by a palladium-catalyzed coupling reaction. The molecule lies about an inversion centre with the two ferrocenyl moieties bound to the 1 and 5 positions of the naphthalene unit and inclined at an angle of $47.0(2)^{\circ}$ with respect to the naphthalene mean plane.

Comment

As part of our continuing investigations on the formation of compounds in which redox centres are linked by conductive bridges (Elder, Robinson \& Simpson, 1990; Robinson, Simpson \& Worth, 1992; Duffy, McAdam, Robinson \& Simpson, 1996), we have prepared 1,5diferrocenylnaphthalene, (I), in yields of $10-20 \%$ by the palladium-catalyzed coupling of ferrocenyl zinc chloride with 1,5 -diiodonaphthalene. The structure of the resulting product is the subject of this report.

(I)
© 1996 International Union of Crystallography
Printed in Great Britain - all rights reserved

The structure of (I) consists of well separated molecules lying about inversion centres with all intermolecular contacts $<3.5 \AA$ involving H atoms (Nardelli, 1983). The naphthalene-bound cyclopentadiene rings of the ferrocenyl groups are inclined at angles of $47.0(2)^{\circ}$ with respect to the naphthalene mean plane. In contrast, the outer naphthyl substituents in $2^{\prime}, 6^{\prime}$-diethyl- $1,1^{\prime}: 5^{\prime}, 1^{\prime \prime}$ trinaphthyl are inclined at angles of 98° with respect to the central naphthalene unit in the centrosymmetric meso form and at angles of 106 and 93° in the DL-isomer (Anton, Adam, Wagner, Qi-Lin \& Müllen, 1993). The twisting of the ferrocene moieties found in the title compound is similar to that observed for the more sterically crowded 1,8-diferrocenylnaphthalene (Lee, Foxman \& Rosenblum, 1985) and its ruthenium analogue (Arnold, Foxman, Rosenblum \& Euler, 1988), but the severe distortions of the naphthalene moiety observed in these compounds are not displayed here. Furthermore, the displacement of the C6 atom, which links the cyclopentadiene ring to the naphthalene, from the naphthalene ring plane is only 0.021 (9) \AA compared with values in excess of $0.07 \AA$ in the 1,8 -substituted complex. Despite these observations, the C $6-\mathrm{C} 12$ bond length of 1.495 (5) \AA compares well with the values obtained for the 1,8 ferrocene and ruthenocene analogues. Bond lengths and angles within the naphthalene and ferrocenyl moieties are unremarkable, as is the angle of $1.0(2)^{\circ}$ between the cyclopentadienyl ring planes. The cyclopentadiene rings are approximately eclipsed with a mean $\mathrm{C} n-$ $\mathrm{Cg} 1-\mathrm{Cg} 2-\mathrm{Cm}$ torsion angle of $-6.3(2)^{\circ}$ (Cg 1 and Cg2 are the centroids of the cyclopentadienyl rings, $n=$ $1-5$ when $m=7-10,6$).

Fig. 1. ORTEP (Johnson, 1965) drawing of the title molecule showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Experimental

The title compound was obtained by the $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$-catalyzed coupling of 1,5 -diiodonaphthalene and ferrocenyl zinc chloride (Lee, Foxman \& Rosenblum, 1985). Following separation by column chromatography ($\mathrm{SiO}_{2} /$ hexane), the product was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with hexane. Analysis calculated for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Fe}_{2}$: $\mathrm{C} 72.62, \mathrm{H} 4.88 \%$; found C 72.32, $\mathrm{H} 4.65 \%$. ${ }^{\mathrm{H}} \mathrm{HMR}^{2}\left(\mathrm{CDCl}_{3}\right): \delta 4.21\left(s, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.40(t$, $\left.{ }^{3} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.64\left(t,{ }^{3} J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$,
7.43 ($m, 2 \mathrm{H}$, naphthalene), 7.9 ($m, 2 \mathrm{H}$, naphthalene), 8.4 (m, 2 H , naphthalene).

Crystal data

$\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{14}\right)\right]$
$M_{r}=496.19$
Monoclinic
$P 2_{1} / n$
$a=9.657(4) \AA$
$b=10.749$ (3) \AA
$c=10.996(3) \AA$
$\beta=110.44(3)^{\circ}$
$V=1069.6(6) \AA^{3}$
$Z=2$
$D_{x}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Siemens P4 diffractometer
ω scans
Absorption correction: ψ scans (SHELXTL-Plus; Sheldrick, 1990)
$T_{\text {min }}=0.380, \quad T_{\text {max }}=$ 0.419

2366 measured reflections 1871 independent refiections 1366 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0382$
$w R\left(F^{2}\right)=0.0892$
$S=0.901$
1871 reflections
145 parameters
H atoms refined using $H F I X$ in SHELXL93 (Sheldrick, 1993)

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 14 reflections
$\theta=5.22-12.39^{\circ}$
$\mu=1.373 \mathrm{~mm}^{-1}$
$T=166(2) \mathrm{K}$
Rhombic
$0.60 \times 0.45 \times 0.30 \mathrm{~mm}$ Orange

$$
\begin{aligned}
& R_{\text {int }}=0.0271 \\
& \theta_{\max }=24.99^{\circ} \\
& h=-11 \rightarrow 2 \\
& k=0 \rightarrow 12 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

3 standard reflections monitored every 97 reflections intensity decay: 1.31%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0482 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.401 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.322 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: none } \\
& \text { Atomic scattering factors } \\
& \text { from International Tables } \\
& \text { for Crystallography (1992, } \\
& \text { Vol. C, Tables 4.2.6.8 and } \\
& \text { 6.1.1.4) }
\end{aligned}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Fel	0.01900 (5)	0.64381 (5)	0.29416 (5)	0.0180 (2)
Cl	0.0633 (4)	0.4888 (3)	0.2078 (3)	0.0245 (8)
C2	0.0506 (4)	0.4573 (3)	0.3282 (3)	0.0266 (9)
C3	-0.0922 (4)	0.4919 (3)	0.3235 (3)	0.0264 (9)
C4	-0.1688 (4)	0.5449 (3)	0.1996 (3)	0.0256 (8)
C5	-0.0731 (4)	0.5425 (3)	0.1279 (3)	0.0243 (8)
C6	0.0692 (4)	0.8169 (3)	0.2425 (3)	0.0195 (8)
C7	0.1958 (4)	0.7590 (3)	0.3324 (3)	0.0236 (8)
C8	0.1676 (4)	0.7337 (3)	0.4471 (3)	0.0257 (9)
C9	0.0230 (4)	0.7739 (3)	0.4295 (3)	0.0240 (8)
C10	-0.0385 (4)	0.8244 (3)	0.3034 (3)	0.0238 (8)
C11	0.1051 (4)	0.7834 (3)	0.0317 (3)	0.0212 (8)
C12	0.0581 (3)	0.8596 (3)	0.1100 (3)	0.0181 (7)
C13	0.0040 (4)	0.9814 (3)	0.0643 (3)	0.0186 (8)
C14	-0.0409 (4)	1.0675 (3)	0.1399 (3)	0.0220 (8)
C15	-0.0969 (4)	1.1807 (3)	0.0928 (3)	0.0237 (8)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

Fel Cl	2.036 (4)	C3-C4	1.423 (5)
$\mathrm{Fe} 1-\mathrm{C} 2$	2.043 (4)	C4-C5	1.408 (5)
$\mathrm{Fe} 1-\mathrm{C} 3$	2.041 (4)	C6-C7	1.419 (5)
$\mathrm{Fe} 1-\mathrm{C} 4$	2.045 (4)	C6-C10	1.422 (5)
$\mathrm{Fe} 1-\mathrm{C} 5$	2.046 (3)	C6-C12	1.495 (5)
Fel-C6	2.052 (3)	C7-C8	1.407 (5)
$\mathrm{Fe} 1-\mathrm{C} 7$	2.031 (3)	C8-C9	1.409 (5)
$\mathrm{Fe} 1-\mathrm{C} 9$	2.033 (3)	C9-C10	1.413 (5)
$\mathrm{Fe} 1-\mathrm{C} 8$	2.033 (4)	$\mathrm{Cl1-C12}$	1.376 (5)
$\mathrm{Fe} 1-\mathrm{Cl} 0$	2.032 (3)	$\mathrm{C} 11-\mathrm{Cl5}{ }^{\text {i }}$	1.398 (5)
Fel-Cgl \dagger	1.649	$\mathrm{C} 12-\mathrm{Cl} 3$	1.435 (5)
$\mathrm{Fel}-\mathrm{Cg} 2 \dagger$	1.643	C13-C14	1.410 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.412 (5)	C13-C13 ${ }^{\text {i }}$	1.445 (6)
$\mathrm{C} 1-\mathrm{C} 5$	1.425 (5)	C14-C15	1.359 (5)
C2-C3	1.412 (5)	C15-C11 ${ }^{\text {' }}$	1.398 (5)
Cg1-Fel-Cg $\dagger \dagger$	179.5	C8-C9-C10	108.0 (3)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 5$	108.1 (3)	C9-C10-C6	108.3 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	107.8 (3)	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{Cl}^{\text {i }}$	122.1 (3)
C2-C3-C4	108.3 (3)	$\mathrm{C} 11-\mathrm{C12-C13}$	118.9 (3)
C5-C4-C3	107.8 (3)	C11-C12-C6	120.0 (3)
C4-C5-C1	108.0 (3)	C13-C12-C6	121.0 (3)
C7-C6-C10	106.9 (3)	$\mathrm{C} 14-\mathrm{Cl} 3-\mathrm{Cl} 2$	122.8 (3)
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{Cl2}$	124.4 (3)	$\mathrm{C} 14-\mathrm{C13-C13}$	118.2 (4)
C10-C6-C12	128.7 (3)	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 13{ }^{\prime}$	118.9 (4)
C8-C7-C6	108.7 (3)	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{Cl3}$	121.8 (3)
C9-C8-C7	108.1 (3)	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 11^{1}$	119.9 (3)

Symmetry code: (i) $-x, 2-y,-z$.
$\dagger \mathrm{Cg} 1$ and Cg 2 are the centroids of the $\mathrm{C} 1-\mathrm{C} 5$ and $\mathrm{C} 6-\mathrm{C} 10$ rings, respectively.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson 1965).

The authors thank Professor W. T. Robinson (University of Canterbury, New Zealand) for data collection. This work is supported by a grant from the Division of Sciences, University of Otago, New Zealand.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1200). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Anton, U., Adam, M., Wagner, M., Qi-Lin, Z. \& Müllen, K. (1993). Chem. Ber. 126, 517-521.
Arnold, R., Foxman, B. M., Rosenblum, M. \& Euler, W. B. (1988). Organometallics, 7, 1253-1259.
Duffy, N. W., McAdam, C. J., Robinson, B. H. \& Simpson, J. (1996). Organometallics. Submitted.
Elder, S. M., Robinson, B. H. \& Simpson, J. (1990). J. Organomet. Chem. 398, 165-176.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lee, M.-T., Foxman, B. M. \& Rosenblum, M. (1985). Organometallics, 4, 539-547.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Robinson, B. H., Simpson, J. \& Worth, G. H. (1992). Organometallics, 11, 3863-3874.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 2406-2409

Cyanobis(1,10-phenanthroline- N, N^{\prime})copper(II) Isothiocyanate-PhenanthrolineWater (2/1/5.5)

Ivan PotočŇák, Michal Dunaj-Jurčo and Dušan Mikloš

Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia.
E-mail: potocnak@cvtstu.cvt.stuba.sk
(Received 18 March 1996; accepted 28 May 1996)

Abstract

The crystal structure of the title complex, $[\mathrm{Cu}(\mathrm{CN})$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]_{2}(\mathrm{NCS})_{2} . \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} .5 .5 \mathrm{H}_{2} \mathrm{O}$, consists of discrete $\left[\mathrm{Cu}(\mathrm{CN})(\text { phen })_{2}\right]^{+}$cations (phen is 1,10 -phenanthroline), NCS^{-}anions and uncoordinated phen and water molecules. The two symmetrically independent Cu atoms are coordinated by four N atoms (from two phen molecules) and by one C atom (from the cyanide group) in the form of a distorted trigonal bipyramid (the C atom is in the equatorial plane).

Comment

The title compound, (I), was prepared and its crystal structure solved as part of a study concerning the changes in shape of the $\left[\mathrm{Cu} X(\text { phen })_{2}\right]^{+}$cation (X^{-}is a pseudo-halide anion) caused by alteration of the out-of-sphere anion.

(I)

The two $\left[\mathrm{Cu}(\mathrm{CN})(\text { phen })_{2}\right]^{+}$cations are shown in Fig. 1 with the atomic labelling, and the asymmetric part of the structure is shown in Fig. 2. The two symmetrically-independent Cu atoms are coordinated by four N atoms from the two phen molecules and by a C atom from the CN^{-}group, creating a $\mathrm{CuN}_{4} \mathrm{C}$ chromophore. The coordination polyhedra are
in the form of a distorted trigonal bipyramid with the cyano C atom in the equatorial plane. The NCS^{-} anions, the water molecules and the remaining phen molecule do not enter the inner coordination sphere. The same $\left[\mathrm{Cu}(\mathrm{CN})(\mathrm{phen})_{2}\right]^{+}$cation has been found in the structures of the $\left[\mathrm{Cu}(\text { phen })_{2}(\mathrm{CN})\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Anderson, 1975), $\left[\mathrm{Cu}^{1 \mathrm{I}}(\text { phen })_{2}(\mathrm{CN})\right]\left[\mathrm{Cu}^{1}(\text { phen })_{2}(\mathrm{CN})_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Dunaj-Jurčo, Potočňák, Cíbik, Kabešová, Kettmann \& Mikloš, 1993) and $\left[\mathrm{Cu}(\text { phen })_{2}(\mathrm{CN})\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right] .2 \mathrm{H}_{2} \mathrm{O}$ (Potočňák, Dunaj-Jurčo, Mikloš \& Jäger, 1996) complexes. The two out-of-plane $\mathrm{Cu}-\mathrm{N}$ bonds in the first coordination polyhedron (Cu1-N11 and Cul-N13) are practically of the same length [average 2.008 (4) Å] and are almost collinear [N11-Cul-N13 170.8(3)]. The two in-plane $\mathrm{Cu}-\mathrm{N}$ bonds ($\mathrm{Cu}-\mathrm{N} 12$ and Cu N14) are significantly different in length [2.085 (6) and 2.129 (6) \AA, respectively] and their mean is longer by $0.099 \AA$ than the mean of the out-of-plane $\mathrm{Cu}-\mathrm{N}$ distances. The third in-plane bond [Cul-C1 1.948 (8) Å] is significantly shorter than the other two $\mathrm{Cu}-\mathrm{N}$ inplane bonds. The out-of-plane angles lie within the range $80.2(2)-96.2(3)^{\circ}$.

Similar features are observed in the geometry of the second coordination polyhedron. The out-of-plane $\mathrm{Cu}-\mathrm{N}$ bonds ($\mathrm{Cu} 2-\mathrm{N} 21$ and $\mathrm{Cu} 2-\mathrm{N} 23$) average 2.006 (6) \AA and the angle between them is 169.7 (3) ${ }^{\circ}$. The two in-plane $\mathrm{Cu}-\mathrm{N}$ bonds ($\mathrm{Cu} 2-\mathrm{N} 22$ and $\mathrm{Cu} 2-$

Fig. 1. ORTEP (Johnson, 1965) drawing of the cations showing the atom labelling. Displacement ellipsoids are plotted at the 40% probability level.

Fig. 2. The asymmetric part of the title structure.

